Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
3.
Nucleic Acids Res ; 51(11): e65, 2023 Jun 23.
Article in English | MEDLINE | ID: covidwho-2322793

ABSTRACT

Despite the need in various applications, accurate quantification of nucleic acids still remains a challenge. The widely-used qPCR has reduced accuracy at ultralow template concentration and is susceptible to nonspecific amplifications. The more recently developed dPCR is costly and cannot handle high-concentration samples. We combine the strengths of qPCR and dPCR by performing PCR in silicon-based microfluidic chips and demonstrate high quantification accuracy in a large concentration range. Importantly, at low template concentration, we observe on-site PCR (osPCR), where only certain sites of the channel show amplification. The sites have almost identical ct values, showing osPCR is a quasi-single molecule phenomenon. Using osPCR, we can measure both the ct values and the absolute concentration of templates in the same reaction. Additionally, osPCR enables identification of each template molecule, allowing removal of nonspecific amplification during quantification and greatly improving quantification accuracy. We develop sectioning algorithm that improves the signal amplitude and demonstrate improved detection of COVID in patient samples.


Subject(s)
COVID-19 Testing , Polymerase Chain Reaction , Humans , COVID-19 , DNA/genetics , Microfluidics
4.
Front Cell Infect Microbiol ; 13: 1161445, 2023.
Article in English | MEDLINE | ID: covidwho-2320330

ABSTRACT

Driven by various mutations on the viral Spike protein, diverse variants of SARS-CoV-2 have emerged and prevailed repeatedly, significantly prolonging the pandemic. This phenomenon necessitates the identification of key Spike mutations for fitness enhancement. To address the need, this manuscript formulates a well-defined framework of causal inference methods for evaluating and identifying key Spike mutations to the viral fitness of SARS-CoV-2. In the context of large-scale genomes of SARS-CoV-2, it estimates the statistical contribution of mutations to viral fitness across lineages and therefore identifies important mutations. Further, identified key mutations are validated by computational methods to possess functional effects, including Spike stability, receptor-binding affinity, and potential for immune escape. Based on the effect score of each mutation, individual key fitness-enhancing mutations such as D614G and T478K are identified and studied. From individual mutations to protein domains, this paper recognizes key protein regions on the Spike protein, including the receptor-binding domain and the N-terminal domain. This research even makes further efforts to investigate viral fitness via mutational effect scores, allowing us to compute the fitness score of different SARS-CoV-2 strains and predict their transmission capacity based solely on their viral sequence. This prediction of viral fitness has been validated using BA.2.12.1, which is not used for regression training but well fits the prediction. To the best of our knowledge, this is the first research to apply causal inference models to mutational analysis on large-scale genomes of SARS-CoV-2. Our findings produce innovative and systematic insights into SARS-CoV-2 and promotes functional studies of its key mutations, serving as reliable guidance about mutations of interest.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Infect Drug Resist ; 16: 2625-2646, 2023.
Article in English | MEDLINE | ID: covidwho-2316643

ABSTRACT

Purpose: To perform a bibliometric analysis of the 100 most-cited articles (T100 articles) on COVID-19 vaccine hesitancy to characterize current trends. Methods: The data of the bibliometric analysis were retrieved from the Web of Science Core Collection (WoSCC) database on January 29, 2023, and the results were sorted in descending order by citations. Two researchers independently extracted the characteristics of the top 100 cited articles, including title, author, citations, publication year, institution, country, author keywords, Journal Cited Rank, and impact factor. Excel and VOSviewer were used to analyze the data. Results: The T100 articles ranged from 79 to 1125 citations, with a mean of 208.75. The T100 articles were contributed by 29 countries worldwide, of which the USA ranked first with 28 articles and 5417 citations. The T100 articles were published in 61 journals; the top three citations were VACCINES, NATURE MEDICINE, and EUROPEAN JOURNAL OF EPIDEMIOLOGY, and the number of citations was 2690, 1712, and 1644, respectively. Professor Sallam, M(n=4) from Jordan, is the author who participated in the most published articles. Catholic University of the Sacred Heart (n=8) had the most T100 articles. Conclusion: It is the first bibliometric analysis of the T100 articles in the field of COVID-19 vaccine hesitancy. We carefully analyzed and described the characteristics of these T100 articles, which provide ideas for further strengthening COVID-19 vaccination and fighting against the epidemic in the future.

6.
Signal Transduct Target Ther ; 8(1): 167, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2305501

ABSTRACT

The highly contagious SARS-CoV-2 Omicron subvariants severely attenuated the effectiveness of currently licensed SARS-CoV-2 vaccines based on ancestral strains administered via intramuscular injection. In this study, we generated a recombinant, replication-incompetent human adenovirus type 5, Ad5-S-Omicron, that expresses Omicron BA.1 spike. Intranasal, but not intramuscular vaccination, elicited spike-specific respiratory mucosal IgA and residential T cell immune responses, in addition to systemic neutralizing antibodies and T cell immune responses against most Omicron subvariants. We tested intranasal Ad5-S-Omicron as a heterologous booster in mice that previously received intramuscular injection of inactivated ancestral vaccine. In addition to inducing serum broadly neutralizing antibodies, there was a significant induction of respiratory mucosal IgA and neutralizing activities against Omicron subvariants BA.1, BA.2, BA.5, BA.2.75, BF.7 as well as pre-Omicron strains Wildtype, Beta, and Delta. Serum and mucosal neutralizing activities against recently emerged XBB, BQ.1, and BQ.1.1 could also be detected but were much lower. Nasal lavage fluids from intranasal vaccination contained multimeric IgA that can bind to at least 10 spike proteins, including Omicron subvariants and pre-Omicron strains, and possessed broadly neutralizing activities. Intranasal vaccination using Ad5-S-Omicron or instillation of intranasal vaccinee's nasal lavage fluids in mouse nostrils protected mice against Omicron challenge. Taken together, intranasal Ad5-S-Omicron booster on the basis of ancestral vaccines can establish effective mucosal and systemic immunity against Omicron subvariants and multiple SARS-CoV-2 variants. This candidate vaccine warrants further development as a safe, effective, and user-friendly infection and transmission-blocking vaccine.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , Mice , SARS-CoV-2 , COVID-19 Vaccines/genetics , COVID-19/prevention & control , Immunoglobulin A
7.
Crit Rev Food Sci Nutr ; : 1-16, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-2257672

ABSTRACT

As the second most abundant trace element in the human body, zinc nutrition is constantly a hot topic. More than one-third population is suffering zinc deficiency, which results in various types of diseases or nutritional deficiencies. Traditional ways of zinc supplementation seem with low absorption rates and significant side effects. Zinc supplements with dietary components are easily accessible and improve zinc utilization rate significantly. Also, mechanisms of maintaining zinc homeostasis are of broad interest. The present review focuses on zinc nutrition in human health in inductive methods. Mainly elaborate on different diseases relating to zinc disorder, highlighting the impact on the immune system and the recent COVID-19. Then raise food-derived zinc-binding compounds, including protein, peptide, polysaccharide, and polyphenol, and also analyze their possibilities to serve as zinc complementary. Finally, illustrate the way to maintain zinc homeostasis and the corresponding mechanisms. The review provides data information for maintaining zinc homeostasis with the food-derived matrix.

8.
Psychol Med ; : 1-10, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-2277703

ABSTRACT

BACKGROUND: This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China. METHODS: This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10-20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used. RESULTS: There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures. CONCLUSIONS: The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.

9.
Front Immunol ; 14: 1066730, 2023.
Article in English | MEDLINE | ID: covidwho-2268658

ABSTRACT

The emergence of SARS-CoV-2 variants stresses the continued need for broad-spectrum therapeutic antibodies. Several therapeutic monoclonal antibodies or cocktails have been introduced for clinical use. However, unremitting emerging SARS-CoV-2 variants showed reduced neutralizing efficacy by vaccine induced polyclonal antibodies or therapeutic monoclonal antibodies. In our study, polyclonal antibodies and F(ab')2 fragments with strong affinity produced after equine immunization with RBD proteins produced strong affinity. Notably, specific equine IgG and F(ab')2 have broad and high neutralizing activity against parental virus, all SARS-CoV-2 variants of concern (VOCs), including B.1.1,7, B.1.351, B.1.617.2, P.1, B.1.1.529 and BA.2, and all variants of interest (VOIs) including B.1.429, P.2, B.1.525, P.3, B.1.526, B.1.617.1, C.37 and B.1.621. Although some variants weaken the neutralizing ability of equine IgG and F(ab')2 fragments, they still exhibited superior neutralization ability against mutants compared to some reported monoclonal antibodies. Furthermore, we tested the pre-exposure and post-exposure protective efficacy of the equine immunoglobulin IgG and F(ab')2 fragments in lethal mouse and susceptible golden hamster models. Equine immunoglobulin IgG and F(ab')2 fragments effectively neutralized SARS-CoV-2 in vitro, fully protected BALB/c mice from the lethal challenge, and reduced golden hamster's lung pathological change. Therefore, equine pAbs are an adequate, broad coverage, affordable and scalable potential clinical immunotherapy for COVID-19, particularly for SARS-CoV-2 VOCs or VOIs.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Horses , Humans , Mice , Rodentia , Mesocricetus , Antibodies, Monoclonal , Broadly Neutralizing Antibodies , Immunoglobulin G , Mice, Inbred BALB C
10.
Emerg Microbes Infect ; : 1-51, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2268776

ABSTRACT

Prolonged infection and possible evolution of SARS-CoV-2 in patients living with uncontrolled HIV-1 infection highlight the importance of an effective vaccination regimen, yet the immunogenicity of COVID-19 vaccines and predictive immune biomarkers have not been well investigated. Herein, we report that the magnitude and persistence of antibody and cell-mediated immunity (CMI) elicited by an Ad5-vectored COVID-19 vaccine are impaired in SIV-infected macaques with high viral loads (> 105 genome copies per ml plasma, SIVhi) but not in macaques with low viral loads (< 105, SIVlow). After a second vaccination, the immune responses are robustly enhanced in all uninfected and SIVlow macaques. These responses also show a moderate increase in 70% SIVhi macaques but decline sharply soon after. Further analysis reveals that decreased antibody and CMI responses are associated with reduced circulating follicular helper T cell (TFH) counts and aberrant CD4/CD8 ratios, respectively, indicating that dysregulation of CD4+ T cells by SIV infection impairs the COVID-19 vaccine-induced immunity. Ad5-vectored COVID-19 vaccine shows no impact on SIV loads or SIV-specific CMI responses. Our study underscores the necessity of frequent booster vaccinations in HIV-infected patients and provides indicative biomarkers for predicting vaccination effectiveness in these patients.

11.
Virus Res ; 323: 199004, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2240649

ABSTRACT

Emerging evidence indicates that gut virome plays a role in human health and disease, however, much less is known about the viral communities in blood. Here we conducted a direct metatranscriptomic sequencing of virus-like-particles in blood from 1200 healthy individuals, without prior amplification to avoid potential amplification bias and with a strictly bioinformatic and manual check for candidate viral reads to reduce false-positive matches. We identified 55 different viruses from 36 viral families, including 24 human DNA, RNA and retroviruses in 70% of the studied pools. The study showed that anelloviruses are widely distributed and dominate the blood virome in healthy individuals. Human herpesviruses and pegivirus-1 are commonly prevalent in asymptomatic humans. We identified the prevalence of RNA viruses often causing acute infection, like HEV, HPIV, RSV and HCoV-HKU1, revealing of a transmissible risk of asymptomatic infection. Several viruses possible related to transfusion safety were identified, including human Merkel cell polyomavirus, papillomavirus, parvovirus B19 and herpesvirus 8 in addition to HBV. In addition, phages in Caudovirales and Microviridae, were commonly found in pools of samples with a very low abundance; a few sequences for invertebrate, plant and giant viruses were found in some of individuals; however, the remaining 31 viruses mostly reflect extensive contamination from commercial reagents and the work environments. In conclusion, this study is the first comprehensive investigation of blood virome in healthy individuals by metatranscriptomic sequencing of VLP in China. Further investigation of potential false positives representing a major challenge for the identification of novel viruses in mNGS, will offer a systemic idea and means to reveal true viral infections of human.

12.
Biosensors (Basel) ; 13(2)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2237489

ABSTRACT

Recently, infectious diseases, such as COVID-19, monkeypox, and Ebola, are plaguing human beings. Rapid and accurate diagnosis methods are required to preclude the spread of diseases. In this paper, an ultrafast polymerase chain reaction (PCR) equipment is designed to detect virus. The equipment consists of a silicon-based PCR chip, a thermocycling module, an optical detection module, and a control module. Silicon-based chip, with its thermal and fluid design, is used to improve detection efficiency. A thermoelectric cooler (TEC), together with a computer-controlled proportional-integral-derivative (PID) controller, is applied to accelerate the thermal cycle. A maximum of four samples can be tested simultaneously on the chip. Two kinds of fluorescent molecules can be detected by optical detection module. The equipment can detect viruses with 40 PCR amplification cycles in 5 min. The equipment is portable, easily operated, and low equipment cost, which shows great potential in epidemic prevention.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Nucleic Acids , Viruses , Humans , Silicon , Microfluidics , Polymerase Chain Reaction/methods , Nucleic Acids/analysis , Nucleic Acid Amplification Techniques , Equipment Design
13.
Front Microbiol ; 13: 1093080, 2022.
Article in English | MEDLINE | ID: covidwho-2237148

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) variants have led to a decline in the protection of existing vaccines and antibodies, and there is an urgent need for a broad-spectrum vaccination strategy to reduce the pressure on the prevention and control of the pandemic. In this study, the receptor binding domain (RBD) of the SARS-CoV-2 Beta variant was successfully expressed through a glycoengineered yeast platform. To pursue a more broad-spectrum vaccination strategy, RBD-Beta and RBD-wild type were mixed at the ratio of 1:1 with Al(OH)3 and CpG double adjuvants for the immunization of BALB/c mice. This bivalent vaccine stimulated robust conjugated antibody titers and a broader spectrum of neutralizing antibody titers. These results suggested that a bivalent vaccine of RBD-Beta and RBD-wild type could be a possible broad-spectrum vaccination strategy.

14.
Cell Rep Med ; 4(2): 100918, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2184477

ABSTRACT

With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Mice , Humans , SARS-CoV-2 , Pandemics , Antibodies, Neutralizing , Immunoglobulin Fc Fragments
16.
Catena (Amst) ; 223: 106924, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2177049

ABSTRACT

Against the background of the COVID-19 pandemic and various armed conflicts, the world is experiencing an unprecedented food crisis. The reclamation of abandoned cropland with food production potential may increase the global food supply in a short period of time, ensuring food security. At present, the extraction of abandoned cropland is mainly based on low- and medium-resolution remote sensing image data, making it difficult to extract fragmented areas in mountainous regions and to distinguish between abandoned cropland and transitional classes (such as fallow cropland). We developed a change-detection method based on within-year Sentinel-2 time series to extract cropland abandoned from 2018 to 2021 and defined four types of croplands, namely spontaneously abandoned, induced abandoned, fallow, and lost cropland, using Linxia County in mountainous China as the study region. First, cropland objects were generated from multi-temporal Sentinel-2 images using the multi-resolution segmentation method, and the land use map of Linxia County from 2017 to 2021 was drawn using random forest classifier. Second, through defining and identifying different cropland types, the interannual dynamic changes in cropland from 2018 to 2021 were extracted by analyzing the annual land use change trajectory. Third, by analyzing the normalized difference vegetation index (NDVI) time series of cropland within-year, the active and cultivated cropland sites within-year were extracted by threshold segmentation. Finally, the changes in the four cropland types were extracted by intersecting the two result types. Our method captured the object level changes well (overall mapping accuracy = 93 ± 5 %), and the extraction accuracy of abandoned cropland reached 81 ± 2 %. Abandoned cropland was mostly located in areas of medium quality and with a moderate distance from rural settlements. Reclamation can potentially increase the grain production in Linxia County by at least 3.6 % and needs to be combined with the local natural geography and human activities. Our method is a robust method for extracting abandoned cropland and may be applied to other research related to land use change.

17.
Shanghai Journal of Preventive Medicine ; 34(4):309-313, 2022.
Article in Chinese | GIM | ID: covidwho-2155966

ABSTRACT

Objective: To conduct on-site epidemiological investigation, emergency response, tracing of infection source and analysis of a confirmed COVID-19 case of a foreign airline cargo service staff member in Shanghai's international airport, aiming to provide reference for prevention of imported COVID-19 cases under regular prevention and control of COVID-19.

18.
Biomed Res Int ; 2022: 5956526, 2022.
Article in English | MEDLINE | ID: covidwho-2162052

ABSTRACT

Background: Lung squamous cell carcinoma (LUSC) has poor survival prognosis and few clinical treatment options. We urgently need to explore new therapeutic drugs in clinical practice. Cepharanthine (CEP) has been shown to have anticancer effects in several tumors, but the mechanism of CEP in treating LUSC has not been reported. Methods: SwissTargetPrediction, PharmMapper, and GeneCards were used to identify targets of CEP and LUSC. Further topological analysis was used to obtain hub genes via Cytoscape. Molecular docking was carried out to verify the combination of CEP with hub targets. Based on bioinformatics, we first analyzed the expression and survival of hub targets in LUSC and further analyzed the correlation between hub targets and cancer stemness, immune cell infiltration, and tumor mutation burden (TMB). Results: A total of 41 targets were identified. Further topological analysis identified 6 hub genes: AURKA, CCNA2, CCNE1, CDK1, CHEK1, and PLK1. Molecular docking analysis showed that CEP had stable binding to all these 6 target proteins. In-depth bioinformatics analysis of these 6 targets showed that high expression of these targets were positively correlated with cancer stemness index and negatively correlated with tumor infiltrating immune cells. In immune subtype analysis, the expressions of these targets were significantly decreased in inflammatory tumors. In addition, we also found that the expressions of these targets were positively correlated with TMB. Conclusion: Based on multidisciplinary analysis, we preliminarily identified potential targets of CEP for LUSC treatment and suggested that CEP may play a role in regulating LUSC stemness.


Subject(s)
Carcinoma, Squamous Cell , Network Pharmacology , Humans , Molecular Docking Simulation , Computational Biology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Lung
19.
Asian J Psychiatr ; 80: 103409, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2158362

ABSTRACT

BACKGROUND: Emerging evidence shows that cognitive dysfunction may occur following coronavirus disease 19 (COVID-19) infection which is one of the most common symptoms reported in researches of "Long COVID". Several inflammatory markers are known to be elevated in COVID-19 survivors and the relationship between long-term inflammation changes and cognitive function remains unknown. METHODS: We assessed cognitive function and neuropsychiatric symptoms of 66 COVID-19 survivors and 79 healthy controls (HCs) matched with sex, age, and education level using a digital, gamified cognitive function evaluation tool and questionnaires at 15 months after discharge. Venous blood samples were collected to measure cytokine levels. We performed correlation analyses and multiple linear regression analysis to identify the factors potentially related to cognitive function. RESULTS: The COVID-19 survivors performed less well on the Trails (p = 0.047) than the HCs, but most of them did not report subjective neuropsychiatric symptoms. Intensive care unit experience (ß = -2.247, p < 0.0001) and self-perceived disease severity (ß = -1.522, p = 0.007) were positively correlated, whereas years of education (ß = 0.098, p = 0.013) was negatively associated with the performance on the Trails. Moreover, the abnormally elevated TNF-α levels (r = -0.19, p = 0.040) were negatively correlated with performance on the Trails in COVID-19 group. CONCLUSION: Our findings suggest that COVID-19 survivors show long-term cognitive impairment in executive function, even at 15 months after discharge. Serum TNF-α levels may be an underlying mechanism of long-term cognitive impairment in patients recovering from COVID-19.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , COVID-19/complications , Patient Discharge , Tumor Necrosis Factor-alpha , Cognitive Dysfunction/diagnosis , Biomarkers , Survivors
20.
Front Genet ; 13: 995736, 2022.
Article in English | MEDLINE | ID: covidwho-2099133

ABSTRACT

Neuropilin-1 (NRP1) is a transmembrane protein involved in many physiological and pathological processes, and it functions as a co-receptor to facilitate the entry of SARS-CoV-2 into host cells. Therefore, it is critical to predict the susceptibility to SARS-CoV-2 and prognosis after infection among healthy people and cancer patients based on expression of NRP1. In the current study, we analyzed the conservation and isoform of NRP1 using public databases. NRP1 expression landscape in healthy people, COVID-19 patients, and cancer patients at both bulk and single-cell RNA-seq level was also depicted. We also analyzed the relationship between tissue-specific NRP1 expression and overall survival (OS), as well as tumor immune environment at a pan-cancer level, providing a comprehensive insight into the relationship between the vulnerability to SARS-CoV-2 infection and tumorigenesis. In conclusion, we identified NRP1 as a potential biomarker in predicting susceptibility to SARS-CoV-2 infection among healthy people and cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL